paper reading
把看过的论文做一个总结,防止我忘掉 # 阅读习惯 1. 看到公式变量用绿色标注一下! 2. 几遍 1. 全文通读,分清楚每句话的意义,只记录重要的话,写下问题 2. 每章提炼出重点 3. 回答以上问题
paper集合
- FULL PARAMETER FINE-TUNING FOR LARGE LANGUAGE MODELS WITH LIMITED
RESOURCES
- 全参数|微调
- Towards A Unified View Of Parameter-Efficient Transfer Learning
- 微调|高效参数|
- 5
- 4
- 3
- LISA: Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning
- TRANSFORMER EXPLAINER: Interactive Learning of Text-Generative
Models
- 没啥营养,把transformer的过程搞了个可视化(也没啥用),唯一的贡献就是让我重新梳理了一遍transformer
- Aligner: Efficient Alignment by Learning to Correct
- A Comprehensive Survey of LLM Alignment Techniques: RLHF, RLAIF,
PPO, DPO and More
- 综述文章,对齐
- CLLMs: Consistency Large Language Models
看的时候遇到的问题,有的需要借助实验来解决
- 上游 upstream是什么?
- token长什么样子?